ALGEBRA List 2. Polynomials, rational functions, partial fractions

1. Find all integer roots of the following real polynomials:

(a)
$$x^3 + x^2 - x + 2;$$
 (b) $x^4 - 3x^3 + 5x^2 - 9x + 6;$ (c) $x^4 + x^2 - 2.$

2. Find all rational roots of the following real polynomials:

(a) $6x^4 - x^3 + 11x^2 - 2x - 2;$ (b) $x^4 - 5x^2 + 4;$ (c) $4x^4 + 7x^2 - 2.$

3. Find all roots of the following real polynomials:

(a)
$$x^4 - 6x^2 - 3x + 2;$$
 (b) $x^4 - 3x^3 - 2x^2 + 2x + 12.$

4. Find all roots of the following complex polynomials, knowing one of their roots:

(a)
$$z^4 + 2z^3 + 4z^2 + 3z + 2$$
, $z_1 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$; (b) $z^4 + 3z^3 + 9z^2 + 12z + 10$, $z_1 = -1 - i$.

5. Perform the long division and find Q(x), R(x) such that P(x) = D(x)Q(x) + R(x), $\deg(R) < \deg(D)$ for

(a)
$$P(x) = x^{12} - 3x^{10} + 2x^7$$
, $D(x) = x^3 + 1$; (b) $P(x) = 2x^8 - 4x^3 + 5x$, $D(x) = x^2 + x + 1$.

6. Factor the following real polynomials into irreducible real factors:

(a)
$$x^3 - x^2 + x - 1$$
; (b) $x^6 + 8$; (c) $x^4 + 3x^2 + 2$

7. Factor the following complex polynomials into irreducible complex factors:

(a)
$$z^3 - z^2 + z - 1$$
; (b) $z^4 + 3z^2 + 2$; (c) $z^4 + 1$.

8. Decompose the following real rational functions into real partial fractions:

(a)
$$\frac{x}{(x^2-1)(x+2)}$$
; (b) $\frac{x-1}{x^3+1}$; (c) $\frac{1}{(x^2-1)(x+1)(x-2)}$

9. Decompose the following complex rational functions into complex partial fractions:

(a)
$$\frac{1}{z^3 - z^2 + 4z - 4}$$
; (b) $\frac{z - 1}{z^3 + 1}$; (c) $\frac{1}{(z^2 + 2)(z + 1)}$.